Math 347: Homework 4 Due on: Oct. 8, 2018

1. Let $f: A \to B$ be a function and C a subset of A. Then one can define a function called the *restriction of f to C* denoted by

$$f|_C : C \to B$$
$$c \mapsto f(c).$$

- (a) Prove that there always exist a (non-empty) subset $C \subset A$ such that $f|_C$ is injective.
- (b) Let C and D be subsets of A. Suppose that for two functions $f: A \to B$ and $g: A \to B$ one has

$$f|_C = g|_C$$
 and $f|_D = g|_D$.

Is it true that f = g? Find a condition on C and D that guarantees that this is true.

- (c) Let C and D be subsets of A. Suppose that $f: C \to B$ and $g: D \to B$ are two functions. When is there a function $h: A \to B$, such that $h|_C = f h|_D = g$?
- 2. Let S be the set of differentiable functions $f : \mathbb{R} \to \mathbb{R}$. One has a function $D : S \to S$ given by D(f) = f', i.e. the derivative of the function f.
 - (a) prove that D is not injective;
 - (b) prove that D is surjective;
 - (c) find the largest subset $T \subseteq S$ such that the restriction of D to T is injective.
- 3. For any set S prove that there is a bijection between P(S) and the set

$$T = \{f : S \to \{0, 1\}\},\$$

i.e. the set of functions from S to $\{0, 1\}$. What can you conclude about the cardinality of S and P(S)?

4. Let $S = \{1/n \mid n \ge 2\}$, and $T = S \cup \{0\} \cup \{1\}$, and consider the function $g: T \to S$ defined by

$$g(0) = 1/2$$
, $g(1) = 1/3$ and $g(1/n) = \frac{1}{n+2}$ for $n \ge 2$.

- (i) Prove that g is a bijection;
- (ii) Use g to prove that [0, 1] and (0, 1) have the same cardinality¹;
- (iii) Prove that \mathbb{R} and (a, b) have the same cardinality for all $a, b \in \mathbb{R}$ such that a < b.
- 5. Consider the function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by

$$f(n,m) = 2^{m-1}(2n-1).$$

Check that this function shows that $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} have the same cardinality. (Along your proof you might need an auxiliary fact, state and prove it. Consider $\mathbb{N} = \{1, 2, ...\}$ here.)

¹ Notice that $[0,1] = T \cup ([0,1] \setminus T)$, and that $(0,1) = S \cup ((0,1) \setminus S)$.